Effects of intravenous apolipoprotein A-I/phosphatidylcholine discs on LCAT, PLTP, and CETP in plasma and peripheral lymph in humans.
نویسندگان
چکیده
OBJECTIVE We have previously shown that intravenous apolipoprotein A-I/phosphatidylcholine (apoA-I/PC) discs increase plasma pre-beta HDL concentration and stimulate reverse cholesterol transport (RCT) in humans. We have now investigated the associated changes in the following 3 HDL components that play key roles in RCT: lecithin:cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), and phospholipid transfer protein (PLTP). METHODS AND RESULTS apoA-I/PC discs (40 mg/kg over 4 hours) were infused into 8 healthy men. Samples of blood and prenodal peripheral lymph were collected for 24 to 48 hours. At 12 hours, plasma LCAT concentration had increased by 0.40+/-0.90 mg/L (+7.8%; mean+/-SD; P<0.05), plasma cholesterol esterification rate by 29.0+/-9.0 nmol/mL per h (+69.5%; P<0.01), plasma CETP concentration by 0.5+/-0.2 mg/L (+29.7%; P<0.01), and plasma PLTP activity by 1.45+/-0.67 micromol/mL per h (+23.9%; P<0.01). In contrast, plasma PLTP concentration had decreased by 4.4+/-2.7 mg/L (-44.8%; P<0.01). The changes in PLTP were accompanied by alterations in the relative proportions of large lipoproteins containing inactive PLTP and small particles containing PLTP of high specific activity. No changes were detected in peripheral lymph. CONCLUSIONS Nascent HDL secretion may induce changes in PLTP, LCAT, and CETP that promote RCT by catalyzing pre-beta HDL production, cholesterol esterification in HDLs, and cholesteryl ester transfer from HDLs to other lipoproteins.
منابع مشابه
Influence of insulin sensitivity and the TaqIB cholesteryl ester transfer protein gene polymorphism on plasma lecithin:cholesterol acyltransferase and lipid transfer protein activities and their response to hyperinsulinemia in non-diabetic men.
Lecithin:cholesteryl acyl transferase (LCAT), cholesteryl ester transfer protein (CETP), phospholipid transfer protein (PLTP), and lipoprotein lipases are involved in high density lipoprotein (HDL) metabolism. We evaluated the influence of insulin sensitivity and of the TaqIB CETP gene polymorphism (B1B2) on plasma LCAT, CETP, and PLTP activities (measured with exogenous substrates) and their r...
متن کاملAcute and chronic effects of a 24-hour intravenous triglyceride emulsion challenge on plasma lecithin: cholesterol acyltransferase, phospholipid transfer protein, and cholesteryl ester transfer protein activities.
Lecithin:cholesterol acyltransferase (LCAT), phospholipid transfer protein (PLTP), and cholesteryl ester transfer protein (CETP) are key factors in remodeling of high density lipoproteins (HDL) and triglyceride-rich lipoproteins. We examined the effect of a large, 24 h intravenous fat load on plasma lipids and free fatty acids (FFA) as well as on plasma LCAT, PLTP, and CETP activity levels in 8...
متن کاملEffect of growth hormone replacement therapy on plasma lecithin:cholesterol acyltransferase and lipid transfer protein activities in growth hormone-deficient adults.
The effects of growth hormone (GH) replacement on plasma lecithin:cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), and phospholipid transfer protein (PLTP), factors involved in high density lipoprotein (HDL) metabolism, are unknown. We carried out a 6 months study in 24 GH-deficient adults who were randomized to placebo (n = 8), low dose GH (1 U daily, n = 8), and ...
متن کامل-HDL concentration in tissue fluid and stimulate reverse cholesterol transport in humans
The extent to which plasma HDL concentration regulates reverse cholesterol transport (RCT) is not known. The principal acceptors of unesterified cholesterol (UC) from cultured cells are small preb -HDL, which we have shown increase in plasma during intravenous infusion of apolipoprotein A-I/phosphatidylcholine (apoA-I/PC) discs in humans. We have now examined the effects on tissue fluid HDL and...
متن کاملPlasma phospholipid transfer protein, cholesteryl ester transfer protein and lecithin:cholesterol acyltransferase in end-stage renal disease (ESRD).
BACKGROUND Chronic kidney disease (CKD) results in accelerated atherosclerosis that is primarily caused by inflammation, oxidative stress and impaired triglyceride and HDL metabolisms. Several plasma proteins including phospholipid transfer protein (PTLP), cholesteryl ester transfer protein (CETP) and lecithin:cholesterol acyltransferase (LCAT) affect HDL metabolism. PLTP transfers phospholipid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 23 9 شماره
صفحات -
تاریخ انتشار 2003